Advanced Surface Modifications for Blood-Contacting Surfaces of Medical Devices
نویسندگان
چکیده
Surface modification of biomaterial interfaces remains an active field of research with a clear aim to enhance and retain blood compatibility of blood-contacting medical devices. Issues such as activation of coagulation pathways, altered hemostasis, inflammatory responses, and thrombosis are potential clinical complications during blood interaction with artificial surfaces that needs to be addressed when a new device is developed or there is a modification of a device or implant in the form of material, surface characteristics, shape, or function. Large surface areas in certain devices, such as blood oxygenator membranes, hemodialysis membranes, or nano-sized particles, present unique surface-related challenges. Minimizing pro-coagulant protein adsorption, platelet activation and deposition on the biomaterial interface are key factors that ultimately decide the performance and long-term reliability of a device. Among various types of biomedical devices, polymeric ones have a lion's share and accordingly substantial attention is being paid to surface-modification of polymeric surfaces. Several challenges in attaining modification of the surfaces include, but are not limited to, device specifics, application specifics and underlying thermodynamic and kinetic specific parameters. International Journal of Biomaterials has launched this special issue with emphasis on analyzing numerous strategies in light of the ongoing advancements in design and development of blood-contacting medical devices. Peer-reviewed, original research, and review papers in the area of blood-compatible surface advancements are included. The topics comprise new methods and combination of principles, novel evaluation techniques, and current and future directions. The papers in this issue address several aspects of blood-contacting surfaces including modulation of interfacial bioactivities, evaluation methods and improvements in surface modification techniques. Altogether, five research papers and one review paper of this special issue are concerned with materials, devices, parameters, and mechanisms in relation to blood compatibility. P. A. Patston et al. describe modulation of specific blood contact activation parameter (kallikrein) by C1-inhibitor in the presence of type IV collagen. They not only demonstrate the tight binding of C1-inhibitor with type IV collagen but also show collagen's influence in reducing the rate of inhibition. This paper provides an additional insight into collagen containing biomaterial surfaces. B. Dhan-dayuthapani and coworkers report on critical evaluation of nanocomposite scaffolds comprising single wall carbon nanotubes and Zein fibers. This paper covers structural, physicochemical, and hemocompatibility assessments that bring into focus the applicability of these unique composite scaffolds. M. Faria et al. contribute with another detailed evaluation in particular of surfaces composed of poly(ester urethane urea) oxygenation membranes. …
منابع مشابه
Improved in Vitro Blood Compatibility of Polycaprolactone Nanowire Surfaces
There are a multitude of polymeric materials currently utilized to prepare a variety of blood-contacting implantable medical devices. These devices include tissue grafts, coronary artery and vascular stents, and orthopedic implants. The thrombogenic nature of such materials can cause serious complications in patients, and ultimately lead to functional failure. To date, there is no truly hemocom...
متن کاملSurface Characterization of Asymmetric Bi-Soft Segment Poly(ester urethane urea) Membranes for Blood-Oxygenation Medical Devices
Asymmetric bi-soft segment poly(ester urethane urea) (PEUU) membranes containing polycaprolactone (PCL) as a second soft segment are synthesized with PCL-diol ranging from 0% to 15% (w/w). Bulk and surface characteristics of the PEUU membranes were investigated by scanning electron microscopy (SEM), static water contact angles, and surface streaming potentials and were correlated to hemocompati...
متن کاملNano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement
Objective(s): Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis. Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were d...
متن کاملEnhanced Blood Compatibility of Metallocene Polyethylene Subjected to Hydrochloric Acid Treatment for Cardiovascular Implants
Blood compatibility of metallocene polyethylene (mPE) was investigated after modifying the surface using hydrochloric acid. Contact angle of the mPE exposed to HCl poses a decrease in its value which indicates increasing wettability and better blood compatibility. Surface of mPE analyzed by using FTIR revealed no significant changes in its functional groups after treatment. Furthermore, scannin...
متن کاملUnravelling the potential of nitric acid as a surface modifier for improving the hemocompatibility of metallocene polyethylene for blood contacting devices.
Design of blood compatible surfaces is obligatory to minimize platelet surface interactions and improve the thromboresistance of foreign surfaces when they are utilized as biomaterials particularly for blood contacting devices. Pure metallocene polyethylene (mPE) and nitric acid (HNO3) treated mPE antithrombogenicity and hydrophilicity were investigated. The contact angle of the mPE treated wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012